Climate change and risks 2 min

Carbon in soils: a mathematical model to better understand the cycle of organic matter

PRESS RELEASE - It all begins and ends with soil. Soil organic matter is the foundation of food security, biodiversity and climate change mitigation. Recent technical advances in soil science and microbiology have revealed hitherto unsuspected organic matter decomposition processes. Researchers from INRAE, the University of Lorraine and AgroParisTech have joined forces to develop an innovative mathematical model that incorporates these recent discoveries. Their work, published on 5 February in Nature Communications, sheds new light on the cycle of soil organic matter.

Published on 05 February 2021

illustration Carbon in soils: a mathematical model to better understand the cycle of organic matter
© N.Pousse - ONF

Soil organic matter is a range of polymers continuously processed into smaller molecules by decomposer enzymes.

 

Soil, and more particularly the organic matter that composes it, is increasingly at the heart of research work, due to its capacity to capture atmospheric carbon and its major role in soil health. Soil organic matter (SOM) is made up of a wide variety of carbon molecules. Microorganisms, as multiple microscopic actors, work together to break it down using enzymes as their tools. The understanding of SOM has considerably advanced in recent years. It was previously assumed that most SOM consisted of recalcitrant compounds, whereas the emerging view considers SOM as a range of polymers continuously processed into smaller molecules by decomposer enzymes. This new vision challenges existing models for predicting carbon dynamics.

 

This is why researchers from INRAE, the University of Lorraine and AgroParisTech have joined forces to develop a model that takes into account new data in soil chemistry and microbial ecology. This model, called C-STABILITY, combines the mathematical approaches of existing models and successfully reproduces the processes of SOM dynamics. C-STABILITY reflects the transformations carried out by enzymes and soil microbes while emphasizing the accessibility of SOM.

 

The theoretical simulations carried out using this new mathematical model shed new light on the relationship between microbial decomposers, SOM chemistry and SOM stock. The flexible mathematical structure of C-STABILITY offers a promising foundation for exploring new hypotheses in SOM and for better assessing the capacity of soils to store carbon.

 

 

 

Reference

Sainte-Marie, J., Barrandon, M., Saint-André, L. et al. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun 12, 810 (2021). https://doi.org/10.1038/s41467-021-21079-6

 

Learn more

Climate change and risks

Using environmental scenarios to determine the world’s future

AllEnvi, the French national alliance for environmental research, has produced a study on possible future environmental scenarios based on a survey of major international foresight studies. The study tackled two issues: What do the scenarios look like and how long are their timelines? While future possibilities go from one extreme to another – from “Chaos” in the trajectories to “Positive Synergies” or environmental degradation and improvement – soil and water appear to face the most danger. These scenarios revealed major deficiencies with regard to seas, oceans, coastlines and forests that need to be quickly addressed.

23 January 2020

Climate change and risks

A unique database providing information to quantify the adaptive capacity of beech to climate change

PRESS RELEASE - Researchers at INRA and the University of Helsinki have worked together to release a unique database to the scientific community. Assembling data collected under the auspices of an EU Cost Action, the database BeechCOSTe52 gathers over 860,000 measurements of phenotypic traits. These data, from more than 500,000 beech trees growing in plantations located in 38 European countries, cover the entire range of beech’s distribution. Over 15 years of work have gone into producing the database; a vital resource for analyzing and understanding the beech’s adaptive capacity to climate change and the potential effects of climate on its distribution range.

06 May 2020