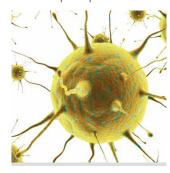
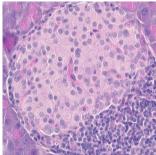


Liberté Égalité Fraternité





Immuno-Endocrinologie Cellulaire et Moléculaire (IECM)

Mission et objectifs

L'Unité d'Immuno-Endocrinologie Cellulaire et Moléculaire développe des projets de recherche fondamentale et appliquée qui visent à mieux comprendre les liens fonctionnels qui existent entre les systèmes immunitaire et neuroendocrinien et les conséquences de leur dérégulation pour l'homme (diabète de type 1) et la santé animale (notamment porcine), dans une approche intégrative «One Health, One Medicine». En réponse à des facteurs de stress (social, nutritionnel, infectieux), l'organisme active différentes voies neuroendocriniennes qui permettent le retour à l'homéostasie. Les médiateurs libérés peuvent également avoir un impact sur l'immunité ainsi que sur le métabolisme énergétique. Le contrôle du métabolisme énergétique est crucial pour les réponses anti-infectieuses et repose notamment sur l'activation du pancréas endocrine, en particulier les cellules bêta productrices d'insuline. Dans ce contexte, l'Unité s'intéresse au métabolisme de la cellule bêta pancréatique et à l'adaptation aux réponses de stress à travers l'étude de deux situations emblématiques: le diabète de type 1, maladie auto-immune associée à un dysfonctionnement des cellules bêta, et le sevrage, phase cruciale pour le développement et la maturation des cellules bêta. Les retombées de ces recherches sont déterminantes en santé humaine et en santé animale. Elles intègrent l'identification de biomarqueurs originaux (microARNs, vésicules extracellulaires) et le développement d'approches thérapeutiques innovantes (vésicules extracellulaires, xénothérapie et pancréas bio-artificiel).

Compétences et expertises

L'Unité IECM réunit biologistes, ingénieurs, pharmacien et vétérinaires autour de compétences en immunologie, métabolisme, biotechnologie et biologie cellulaire, moléculaire et intégrative. Cette multidisciplinarité favorise la valorisation par des publications de très haut niveau, des brevets, le transfert de nouveaux concepts précliniques vers la recherche clinique en santé animale et humaine et la valorisation industrielle (Xenothera).

Direction

Jean-Marie Bach, directeur Blandine Lieubeau, directrice adjointe

Quelques chiffres

- 6 chercheurs et enseignants-chercheurs
- 3 ingénieurs
- 6 techniciens et administratifs
- 2 doctorants
- 1 animalerie rongeurs A1 et A2
- 1 plateforme d'Immunomonitoring
- 1 plateau de biologie moléculaire

Centre Pays de la Loire

Oniris Atlanpole-Chantrerie / CS 40706 F - 44307 Nantes Cedex 3 Tél.: +33 (0)2 40 68 77 17 jean-marie.bach@oniris-nantes.fr www.oniris-nantes.fr/la-recherche/ les-unites-de-recherche/ iecm-usc-1383oniris

USC1383

Liberté Égalité Fraternité

Recherches

Les recherches développées dans l'Unité s'articulent autour de deux axes: (1) l'étude du développement, de la maturation et de la fonction bêta pancréatique autour du sevrage, et (2) le développement de biothérapies innovantes utilisant les vésicules extracellulaires dérivées de cellules bêta pancréatiques.

La période du sevrage est une phase clef pour le développement du pancréas endocrine avec notamment la transition alimentaire. Face à une demande accrue en insuline, cette période s'accompagne de la maturation des cellules bêta pancréatiques associée à une forte prolifération et à une augmentation de leur potentiel insulino-sécréteur. Cette phase de transition nécessite que la cellule bêta intègre de nombreux signaux, y compris ceux transmis en cas d'exposition de l'organisme à différents challenges. En effet, lorsque l'homéostasie est menacée, l'organisme s'adapte en mettant en place des réponses de stress. En élevage de porcs charcutiers en particulier, le sevrage est une période critique pour les porcelets qui sont exposés à de multiples sources de stress (séparation avec leur mère, mélange avec des congénères non familiers, changement d'environnement, ...). Le succès de cette étape repose sur la bonne capacité d'adaptation des individus, au risque de voir apparaître des troubles de santé compromettant la croissance et le bien-être des animaux. En parallèle, la réduction des autres facteurs de stress en élevage limite ce risque. Dans ce contexte, nous travaillons notamment à caractériser les effets de conduites de sevrage innovantes sur la santé et le bien-être des porcs tout au long de leur vie.

En parallèle, nos études sur les effets des réponses de stress sur la maturation et la fonction des cellules bêta pancréatiques visent des applications en santé porcine mais aussi pour les patients diabétiques. Par exemple, notre Unité développe des stratégies de xénogreffe d'îlots pancréatiques issus de porcelets non-sevrés et embarqués dans un pancréas bio-artificiel pour le traitement des patients insulino-dépendants.

Actuellement, un consensus se dessine pour développer des thérapies combinées pour le diabète de type 1, visant la reprogrammation de l'auto-immunité vers un état de tolérance, le maintien de la fonction bêta pancréatique et la prévention de certains mécanismes pathogènes. Dans ce contexte, les vésicules extracellulaires, en particulier de petite taille (ou sEV, de 50 à 130 nm de diamètre), apparaissent comme des candidats thérapeutiques très prometteurs.

En effet, la captation par les cellules de sEV de multiples origines instruit en permanence le système immunitaire permettant de tolérer activement le soi et même certaines entités étrangères telles que les fœtus et la flore commensale. Les sEV provenant de cellules bêta pancréatiques saines pourraient alors constituer une opportunité préventive et thérapeutique décisive pour le diabète de type 1. Tirant profit de nos compétences et équipements en bioproduction et vésicules extracellulaires, nous développons actuellement des stratégies de production de sEV de cellules bêta pancréatiques saines à grande échelle en parallèle de l'évaluation in vitro et in vivo de leur potentiel immunomodulateur.

Collaborations

Régionales : CRTI, Inserm U1064 ; RMeS, CNRS/Inserm U1229 ; GEPEA, UMR CNRS 6144 ; BioEpar, INRAE UMR 1300 ; Laberca, INRAE UMR 1329 ; PanTher, INRAE UMR 703.

Nationales: Inserm U1151, Institut Necker Enfants Malades (Paris); IGDR, UMR CNRS 6290 (Rennes); LRGP, UMR CNRS 7274 (Nancy); CEED, EA 7294 (Strasbourg); GenPhySe, INRAE UMR 1388 (Castanet-Tolosan); Pegase, INRAE UMR 1348 (St Gilles); GenESI, INRAE UE 1372 (St Pierre d'Amily).

Internationales: C. Galli (Avantea, Cremona, Italie); E. Cozzi (Academic Hospital, Padova, Italie); N. Young (University of Ohio, USA).

Enseignement

Les enseignants-chercheurs et chercheurs de l'unité IECM organisent et assurent la formation initiale des vétérinaires et ingénieurs d'Oniris en Physiologie, Physiopathologie et Biotechnologies. Ils sont impliqués également dans l'organisation du Master II Biologie, Biotechnologie et Recherche Thérapeutique de l'Université de Nantes, co-accrédité par Oniris et dans la commission internationale de l'Ecole Doctorale Biologie-Santé de l'Université Bretagne Loire (UBL).

Liberté Égalité Fraternité

USC1383

Dispositifs d'expérimentation

L'Unité IECM a participé à la création du Centre de Recherche et d'Investigation Préclinique d'Oniris (CRIP) et s'investit au travers de deux plateformes :

- L'animalerie Rongeurs A1 et A2 :
- Avec une capacité d'accueil de 1000 rongeurs, l'animalerie de 350m2 comprend plusieurs zones d'hébergement permettant d'accueillir des animaux EOPS, A1 et A2. Elle dispose également de 2 pièces d'expérimentation équipées pour la chirurgie des rongeurs.
- La plateforme d'immunomonitoring :
- Grâce à différents outils (cytomètre de flux, ELISPOT...), elle offre la possibilité d'analyser les réponses immunitaires chez l'Homme et l'animal dans le cadre de collaborations ou de prestations de service à destination des laboratoires académiques et des structures privées. La plateforme est également équipée d'un qNano (IZON), instrument basé sur la technologie « Tunable Resistive Pulse Sensing » qui permet, en utilisant des nanopores de différentes tailles, de mesurer la taille de nanoparticules et de les quantifier. Cet outil est notamment adapté pour la caractérisation des sous-populations de vésicules extracellulaires.

L'Unité est aussi responsable de la Halle des biotechnologies d'Oniris, ce qui lui permet de mobiliser du matériel spécialisé en bioproduction, tels différents types de bioréacteurs essentiels au développement de produits cellulaires et acellulaires de thérapie innovante.

Sélection de résultats marquants (2015-2021)

• Développement d'un prototype de pancréas bio-artificiel greffé en sous-cutané

<u>Contexte</u>: Dans le cadre de la transplantation, la viabilité et la fonctionnalité des ilots pancréatiques encapsulés dépendent notamment de leur protection vis-à-vis du système immunitaire et d'un apport adéquat en oxygène (O2).

Résultat : En collaboration avec les unités CRTI et RMeS (Nantes), LRGP (Nancy), Avantea (Italie), IECM a développé un prototype original et innovant de pancréas bio-artificiel greffé en sous-cutané, embarquant à très haute densité des îlots pancréatiques dans un hydrogel les protégeant de l'immunité, et optimisé en apport et transfert d'oxygène garantissant une survie fonctionnelle des îlots. Ce pancréas bio-artificiel peut intégrer des îlots humains ou porcins n'exprimant pas les deux principaux xeno-antigènes responsables d'un rejet (hyper-) aigu immun (α -(1,3)-galactose et acide N-glycolylneuraminique). Sa validation préclinique in vivo et le développement d'une version 'injectable' ouvriront des perspectives clés pour l'Homme. Impact : La stratégie développée pourrait bénéficier aux patients diabétiques et à d'autres applications nécessitant un apport optimal en O2.

• Effets des vésicules extracellulaires de cellules bêta stressées sur les réponses immunitaires

<u>Contexte</u>: Les vésicules extracellulaires (EV) sont des acteurs clefs de la communication intercellulaire. Dans le contexte du diabète de type 1, il a été montré que les EV provenant de cellules bêta stressées pouvait favoriser l'auto-immunité. Nous avons étudié le phénotype et le potentiel immunomodulateur des différents types d'EV (corps apoptotiques, microvésicules et EV de petite taille) provenant de cellules bêta exposées à divers facteurs de stress

<u>Résultat</u>: L'exposition des cellules bêta pancréatiques à un stress hypoxique, génotoxique ou inflammatoire modifie leur profil de sécrétion et la composition de vésicules extracellulaires avec pour conséquence des changements dans les réponses immunitaires induites

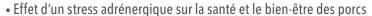
<u>Impact</u>: Les EV de cellules bêta stressées sont capables de véhiculer des signaux pro-inflammatoires qui participent à l'exacerbation des réponses immunitaires avec des effets potentiellement délétères dans le cadre des maladies auto-immunes.

 ${\sf DOI:110.3389/fimmu.2020.01814,10.3389/fgene.2020.578335}$

Contact: steffi.bosch@oniris-nantes.fr

Liberté Égalité Fraternité

Sélection de résultats marquants (2015-2021)


• Transplantation d'ilots pancréatiques porcins : développement d'un porc humanisé

<u>Contexte</u>: Dans le cadre de la thérapie du diabète de type 1 et face au manque de donneurs, la transplantation d'ilots pancréatiques porcins (xéno-transplantation) est une alternative prometteuse à l'allotransplantation. Cependant les glycosylations des protéines porcines représentent un obstacle majeur du fait de la présence chez l'Homme d'anticorps naturels reconnaissants ces glycosylations en particulier les deux glyco-antigènes, α -(1,3)-galactose et l'acide N-glycolylneuraminique.

<u>Résultat</u>: Collaboration avec les unités CRTI (Nantes) et Avantea (Italie), nous avons développé un porc humanisé, double KO dépourvu en ces 2 types de glycosylation. Le pancréas de ces animaux est normal et son contrôle de l'homéostasie glucidique est fonctionnel.

<u>Impact</u>: Ces travaux ouvrent la voie à l'utilisation du porc double KO comme donneur d'organe dans le cadre de la xénotransplantation en particulier dans le pancréas bio-artificiel.

DOI: 10.2337/db16-1060, 10.3389/fimmu.2020.00622, 10.1073/pnas.1915658117 Contact: jean-marie.bach@oniris-nantes.fr

Contexte : Chez les mammifères, les macrophages appartiennent à la première ligne de défense contre les agents pathogènes. Stimulés par des motifs microbiens, ils sont capables d'éliminer les pathogènes et de recruter au site infectieux les autres acteurs de l'immunité. Comprendre comment les facteurs de stress impactent leurs fonctions permettra d'améliorer la santé et le bien-être des porcs en élevage. Résultat : Les macrophages expriment des récepteurs spécifiques aux catécholamines (adrénaline et noradrénaline) secrétées lors d'un stress. Nous montrons que l'adrénaline induit, via son récepteur $\alpha 2$, une baisse de la capacité des macrophages à sécréter un médiateur clé de l'inflammation, le TNF α , en réponse à une stimulation bactérienne. Si la stimulation $\alpha 2$ -adrénergique n'affecte pas la capacité des macrophages à phagocyter et à neutraliser directement une bactérie, il prévient l'acquisition d'un phénotype M1 pro-inflammatoire par les macrophages, sans favoriser une polarisation de type M2 contrairement aux données obtenues chez la souris.

<u>Impact</u>: Ce résultat est déterminant en santé porcine car il montre qu'un stress adrénergique limite la capacité des macrophages à attirer au site infectieux les autres acteurs cellulaires de l'immunité. Considérant que les macrophages porcins constituent un meilleur modèle que ceux de la souris pour prédire le comportement des macrophages humains, de tels effets des catécholamines sur l'immunité innée pourraient également exister chez l'Homme.

DOI: 10.1016/j.dci.2017.06.007 Contact: blandine.lieubeau@oniris-nantes.fr

• Effet du stress, chez le porc, lié aux mélanges avec des congénères non familiers sur la réponse anti-infectieuse

<u>Contexte</u>: En élevage intensif, les porcs sont régulièrement exposés à diverses sources de stress. Par exemple, le mélange avec des congénères non familiers est une pratique courante dont nous avons souhaité décrire les conséquences à court terme sur l'immunité.

 $\frac{R\acute{e}sultat}{R\acute{e}sultat}: \ \ Nous \ avons \ montr\'e \ qu'une \ heure \ de \ contact \ avec \ des \ cong\'en\`eres \ non familiers induit \ chez \ le porc \ ag\'e \ de \ 6 \ semaines \ une augmentation \ des \ taux \ de \ cortisol \ et \ de \ cat\'echolamines \ circulants. \ Ce \ stress \ aigu \ entra \ ne \ forte \ mobilisation \ des \ leucocytes \ dans \ le \ courant \ circulatoire \ (granulocytes, monocytes \ et \ lymphocytes \ CD8 \ active \ halgr\'e \ la \ monocytose, les \ fonctions \ monocytaires \ (capacit\'e \ de \ phagocytose \ et \ de \ s\'ecr\'etion \ de \ cytokines \ en \ r\'eponse \ à \ un \ ligand \ bact\'erien) \ sont \ diminu\'e \ es.$

<u>Impact</u>: Chez le porc, les réponses de stress pourraient induire une baisse d'efficacité de la réponse antiinfectieuse, ce qui pourrait expliquer par exemple l'augmentation de la survenue des troubles gastrointestinaux au sevrage.

DOI: 10.1016/j.physbeh.2016.11.012 Contact: julie.herve@oniris-nantes.fr

