Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis

Jasmine Burguet IJPB, INRAE, Versailles

Quantifying plant growth dynamics

Organ morphogenesis implies long-term spatio-temporal processes

- **Global goal**: determine how/where/when these processes operate during growth
- Intermediate goal: quantify organ shape evolution during growth

Quantifying plant growth dynamics

Organ morphogenesis implies long-term **spatio-temporal** processes

- **Global goal**: determine how/where/when these processes operate during growth
- Intermediate goal: quantify organ shape evolution during growth

- Some challenges:
 - organs are not always accessible/observable from early to late stages
 - organ size changes a lot (from micro- to macro-scales)
 - long-term observation may significantly impact growth itself
 - multiple observations must be done/integrated to face variability

Quantifying plant growth dynamics: the leaf as a model

Quantifying plant growth dynamics: the leaf as a model

This is not the real temporal dynamics! Time should be reintroduced ⇒ "dating" leaves

First : determining the starting time using modeling

Available time: plant age

First : determining the starting time using modeling

First : determining the starting time using modeling

Modeling strategy useable to estimate initiation time of any structures appearing sequentially

Second: relying organ size and age

- Leaf size is recorded as a function of plant age
- Time translation is applied to get measures as a function of leaf age
- A sigmoid (Hill function) is fitted to the data

Second: relying organ size and age

- Leaf size is recorded as a function of plant age
- Time translation is applied to get measures as a function of leaf age
- A sigmoid (Hill function) is fitted to the data

The organ age can be retrieved from its size

Second: relying organ size and age

The organ age can be retrieved from its size

Reconstructing temporal growth trajectories

The continuous organ shape evolution is retrieved from fixed images only

Reconstructing temporal growth trajectories

Contours of leaves at 220h, 290h, 360h, 430h, 500h and 570h after initiation

Quantifying shapes during growth Global shape

Revealing key events during the development

Static data used to reconstruct morphodynamics

- a model to determine apparition times (simple counting protocols)
- a fitted growth function relating size and age
- explicit long-term morphodynamics can be retrieved/quantified
- the effects of alterations (mutation, environment, ...) can be localized/quantified during all growth
- In Aradidopsis thaliana:
 - leaf heteroblasty was characterized during growth (global/local scales)
 - dynamics of successive leaves in Arabidopsis thaliana follow a same program, with graded parameters
 - key developmental events can be revealed in space and time (using, e.g., mutants)

A collaborative work at IJPB, INRAE Versailles

Team Modeling and Digital Imaging

- Philippe ANDREY
- Eric BIOT
- <u>Mohamed OUGHOU</u>

Team Transcription Factors and Architecture

- Nicolas ARNAUD
- Patrick LAUFS
- Aude MAUGARNY-CALES