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> 1-Introduction
What are FSPMs?

» Functional Structural Plant Models are:

* Plant models focusing on the functioning of the individual plant in its environment (endogenous/external)

e Architectural: they include a fine representation of the plant-environment interface

 Mechanistic: they allow the phenotype of plants to be decomposed into elementary traits

» Few interactions between the community of FSPM and that of SAMs (gene network, cell biology, SAM geometry...)

» Role of SAMs in plant development is mostly implicit, based on empirical functions
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2 - A review of the integration
of SAMs in FSPMs



> 2- Integration of SAMs in FSPMs — A Review

Characteristics of reviewed FSPMs

Review of 69 FSPMs (1996 — 2021)
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A large diversity of species, architectures, biological groups... and of SAMs !
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> 2- Integration of SAMs in FSPMs — A Review

Representation of SAMSs in FSPMs

Explicit SAM module ? Geometrical representation of the
SAM in dynamic FSPM?

BYES EYes(bud) ENO EYES @? ENO
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Dynamic vs static FSPM

W Dynamic @ Static
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> 2-Integration of SAMs in FSPMs — A Review

Functions supported by SAMs in FSPMs

100

% of FSPM
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> 2-

Integration of SAMs in FSPMs — A Review

Regulation of SAMs functioning in FSPMs
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3 - Why the latest knowledge on SAMs should be
better integrated into FSPMs?



> 3-SAMs -> FSPMs

Plasticity of growth and development

Although FSPMs aim at simulating plant plasticity, a lot of
A T acstivum‘Soissons' D 2 maysior empirics / fixed traits

1- Leaf shape :
* High genetic diversity x environmental plasticity

N=1 N=3 N=5 N=7 N=9 N= N=3 N=7 N=11 N=15 N=18 N=19 ® Large Impact on plant— environment interactions (Ilght,
B T aestivum ‘Caphorn’ E Z. mays ‘F36' Water’ diseasesu.)

““‘ ‘ “‘ ‘ ‘ * Role of SAMs in the ontogenic gradient?

N=3 N=5 N=7 N=10N=11  N=3 N=7 N=10 N=13N=15 N=16
C H vulgare ‘Barke’ F =z mays ‘Menuet'
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R Barillot Dornbusch et al. 2011



> 3-SAMs -> FSPMs

Plasticity of growth and development

2- Phyllotaxy: empiric in a large majority of FSPMs, despite more geometric and mechanistic approaches
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> 3-SAMs -> FSPMs

Plasticity of growth and development

3- Initial size and properties of primordia :

* Initial dimensions and biomass often constant. (See talk of J-L Durand)

* Some ontogenic gradients are difficult to predict with models
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* Could these properties emerge from FSPMs with an explicit integration of SAM functioning and geometry?
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> 3-SAMs -> FSPMs

Plasticity of growth and development
4- Rate of primordia initiation :

* Mainly driven by temperature or stochastic model of phenology in FSPMs

* Insome FSPMs, driven by the phyllochron

n-1 Emergence 4
of leaf n
R n ~
M<N———1 r
—_—
n n+1
: j n+1 n+2{_
— = ~———
t t+1 Verdenal et al., 2008 ; Rouet et al., 2022

* Integration of SAM functioning could help to understand the role of exogeneous and endogenous factors.

INRAZ  » What is the minimal level of integration?
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> 3-SAMs -> FSPMs

Branching and lateral meristems

* Branching strongly determines plant architecture and their competitive ability
* Light intensity and spectrum (R:FR) known to affect the transition from latent to active SAM.

Open questions : localization of the perception sites, signal integration at the SAM level, temporal integration of the signals?

 How to integrate the effects of external (light, temperature, photoperiod...) and internal factors (hormones, sugars, age...)?
-> See talk of J Bertheloot

PAR =500 pmol m2s?; R/FR=1.15

Branching
delay
(phyllochrons)

Gautier et al. 2000 ...

PAR (umol m*s™)

Y RIFR
INRAZ
Integration of SAMs in FSPMs B p.13
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Prusinkiewicz et al. 2009



> 3-SAMs -> FSPMs

Branching and lateral meristems

* In FSPMs, the number of SAMs rises very rapidly but we lack knowledge about their death (dormancy)
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* Number of active SAMs very sensitive in most
FSPMs

* Need for better integration of stop/death
conditions

* Integration of multiple stress
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Simulated heading date (days after Jan 1st)

Major stage of plant phenology which affects the sink: source relations, production of fruits, perenniality

> 3-SAMs -> FSPMs

Floral transition

* Integration of environmental factors at SAM scale
* Exploration of genetic diversity
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> 3-SAMs -> FSPMs a

Floral transition

Integration of hormonal signal transport and defoliation
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> 3-SAMs -> FSPMs

Floral transition & inflorescence architecture
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Integration of floral gene network
Azpeitia et al.., 2021

(See talk of C Godin)
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4 — How can the FSPMs help to better
understand the functioning of SAMs?



> 4-FSPMs -> SAMs

Dia sur formalisme? Notamment Lsystem?
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> 4-FSPMs -> SAMs

Plante — environnent interactions

* Fine representation of plant - environment interactions : resource capture/availability, physical state at
plant and organ scale

* Can address heterogeneous stands with inter- or intraspecific variability

* Plant response to specific managements of the architecture: mowing, pruning, diseases

Verdenal et al. 2008
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> 4-FSPMs ->SAMs

Functional and Structural models

e FSPMs simulate spatially distributed processes in the architecture

* Provide access to metabolites / substrates / water / hormones concentration at SAM level

 Account for inter-organ competition and transport
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> Conclusions
FSPMs <-> SAMs

2 communities that should continue to collaborate to better understand how the plant
phenotype is formed

Disentangle and quantify the role of the different external and internal factors

How to integrate the different scales between the gene network and the whole plant?
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Thank you !



