

Désherbage intra-rang Le Challenge ROSE et le projet BIPBIP

Virginie BARBOSA¹, Jean-Pierre DA COSTA²

- ¹ Laboratoire national de métrologie et d'essais
- ² Laboratoire IMS & Bordeaux Sciences Agro

Maraîchage et grandes cultures : le verrou du désherbage intra-rang

Des pratiques agricoles en pleine mutation

- Fortes attentes sociétales (écologie, qualité, santé)
- Règlementation environnementale de plus en plus contraignante
- → réduire l'usage des produits phytosanitaires
- → s'orienter vers des solutions alternatives

Le désherbage : une opération critique

- Pas d'herbicice à la fois sélectif et large spectre
- Diversité des cultures et itinéraires culturaux compliquant la mécanisation
- Désherbage manuel : difficultés de recrutement, pénibilité, coût financier

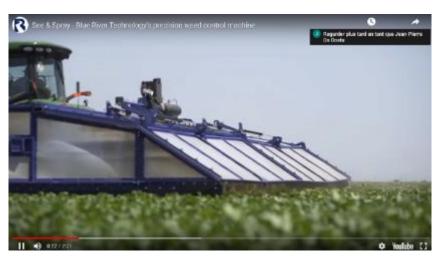
Des solutions opérationnelles pour l'inter-rang...

- Solutions attelées ou autonomes
- Désherbage chimique
- Désherbage mécanique :
 - Binage dans l'inter-rang
 - Au plus près du rang
 - Pour cultures formées et jeunes pousses


Robot Oz - Naio Technologies

Garford cultivator

Garford Robocrop Jeunes Pousses



Mais peu de solutions pour l'intra-rang!

Pulvérisation de précision : la dose juste au bon endroit

- Assistance par GNSS et Vision
- Systèmes de buses adaptés
- → permet de réduire l'usage d'herbicides, pas de s'en affranchir!

See and Spray (Blue River Technology)

I-Spray (Kuhn & Carbon Bee)

Mais peu de solutions pour l'intra-rang!

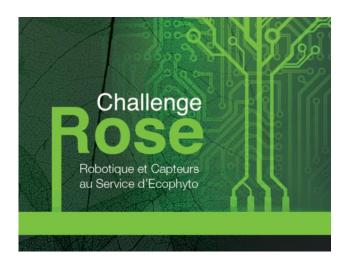
Binage de précision

Quelques solutions tractées pour plantes développées

- Pas pour semis/plantations denses, aux stades précoces
- Quelques robots, prototypes et pré-séries : des vecteurs à équiper !

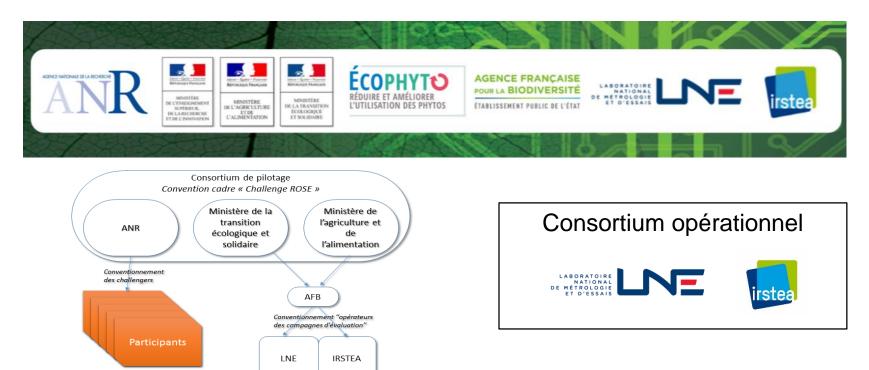
Mais peu de solutions pour l'intra-rang!

- → Pour de nombreuses cultures : pas de solution aboutie
- → Seul recours dans de nombreux cas... le désherbage manuel !



Robotique et capteurs au service d'Ecophyto

Qu'est ce qu'un challenge?

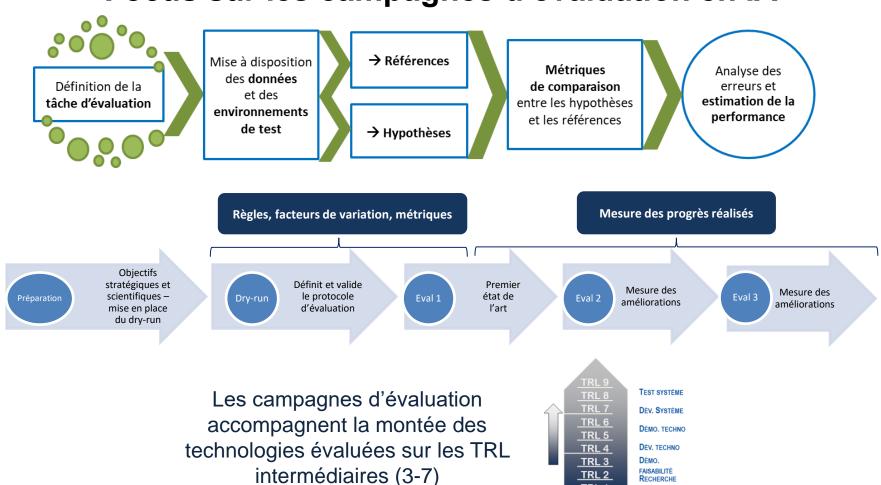

- Instrument de financement spécifique de l'ANR
- Encourage plusieurs équipes à travailler simultanément sur une même problématique
- Stimule la créativité et le développement de solutions innovantes en incitant les chercheurs à confronter leurs idées
- Permet de tester les performances des solutions à intervalles réguliers lors de <u>campagnes</u> <u>d'évaluation</u>
- Favorise l'établissement de standards pour comparer différentes approches

dans un esprit alliant coopération et compétition

Robotique et capteurs au service d'Ecophyto

Encourager le développement de solutions innovantes autonomes en matière de désherbages intra-rang des adventices dans des grandes cultures céréalières à fort écartement et cultures maraîchères de plein champ afin de réduire de 50% l'usage de produits phytosanitaires

Robotique et capteurs au service d'Ecophyto

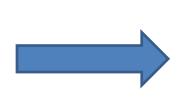

Quatre projets financés

Titre	Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce	Perception Et binage autonome des cultures en Agriculture Durable	RObotics SEnsorimotor loops to weed AUtonomously	Robot de désherbage localisé par procédé électrique haute tension combiné avec une gestion prédictive par vision hyper-spectrale et postévaluation par drone
Acronyme du projet	BIPBIP	PEAD	ROSEAU	WeedElec
Organisme coordinateur	Laboratoire IMS, UMR 5218 CNRS, Univ. Bordeaux, Bordeaux INP) Equipe MOTIVE	Institut de recherche Xlim (UMR CNRS 7252, multi-sites Limoges, Poitiers, Brive, Angoulême) Equipe REMIX	SITIA (Société d'ingénierie)	UMR Itap Information, Technologies, Analyse environnementale, Procédés agricoles (Irstea, Montpellier SupAgro) Equipes COMIC et PEPS
Partenaires académiques	Bordeaux Sciences Agro Bordeaux INP CNRS Univ. Bordeaux (IMS, Labri équipe Rhoban)	CNRS Université de Limoges (Xlim)	INRA (UMR Agroécologie) IRSEEM	Irstea CIRAD (AMAP, UR AIDA) INRIA (ZENITH, LIRMM) INRA (UMR EMMAH/UAPV)
Partenaires techniques et économiques	Les Fermes Larrère Elatec CTIFL	CARBON BEE SABI AGRI	Les chambres régionales d'Agriculture de Pays de la Loire et de Bretagne	AGRIAL

Robotique et capteurs au service d'Ecophyto

Focus sur les campagnes d'évaluation en IA

TRL 1


FONDA

Robotique et capteurs au service d'Ecophyto

Focus sur les campagnes d'évaluation en IA

Les campagnes d'évaluation doivent garantir :

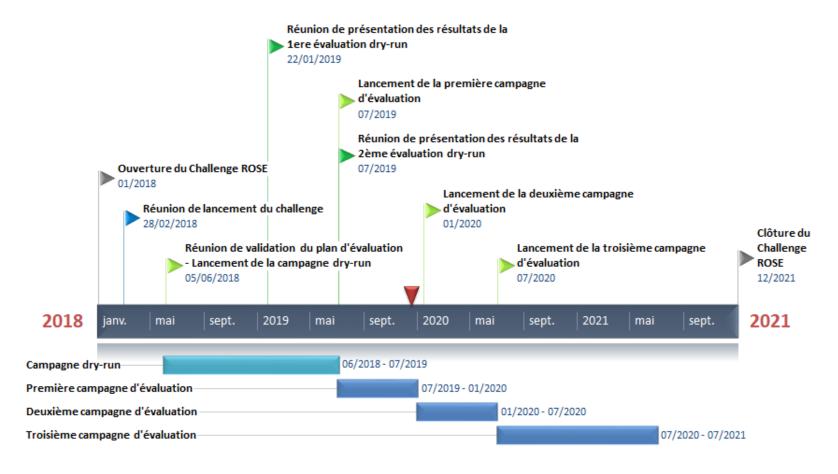
- La répétabilité des mesures de performance et la reproductibilité des expérimentations
- L'équité de traitement des participants (mêmes règles et environnements de test)
- La comparabilité des résultats

Définition de protocoles et des métriques associées aux critères d'évaluation

= PLAN D'EVALUATION

Robotique et capteurs au service d'Ecophyto

Le plan d'évaluation <u>précise</u> notamment :


- les tâches à réaliser par les solutions évaluées ;
- les modes opératoires ;
- les moyens et outils de comparaison (parcelles, données, etc.);
- les critères et métriques d'évaluation ;
- les formats de données attendus pour l'évaluation ;
- les informations nécessaires pour participer aux évaluations (calendrier, règlement, etc.).

Le plan d'évaluation est construit <u>en concertation</u> avec les consortiums participant au challenge

Robotique et capteurs au service d'Ecophyto

Macro-planning du challenge ROSE

Robotique et capteurs au service d'Ecophyto

Critères d'évaluation du challenge ROSE

- Le niveau atteint de réduction de l'utilisation des herbicides et de l'ensemble des produits phytopharmaceutiques
- L'état sanitaire général de la culture et le maintien du rendement des cultures
- Les coûts (temps de travail/rendement de chantier/consommation énergétique/charges opérationnelles totales)
- L'acceptabilité de la solution par les utilisateurs
- L'intégrité de l'environnement ;
- Les risques d'exposition pour l'utilisateur ou les riverains lors de l'utilisation et l'entretien des outils.

Robotique et capteurs au service d'Ecophyto

Les tâches évaluées lors de la première campagne d'évaluation

- ✓ Evaluation de la détection des adventices et cultures
- ✓ Evaluation de l'action de désherbage sur parcelle
- ✓ Evaluation globale sur parcelle

AgroTechnoPôle site Irstea Montoldre

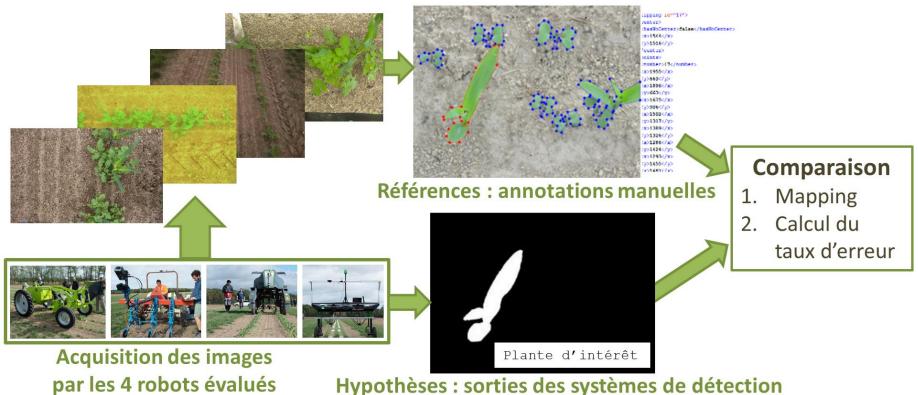
Robotique et capteurs au service d'Ecophyto

Types de cultures implantées :

- grande culture à fort écartement :
 <u>maïs</u> (inter-rangs 75 à 80 cm, inter-pieds 14 cm)
- cultures légumières de plein champ : <u>haricot</u> (inter-rangs 15 à 30 cm, inter-pieds 3 à 8 cm)

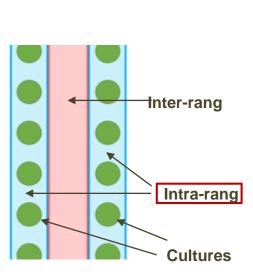
Types d'adventices implantées :

- à port étalé (horizontal) :
- Adventices modèles : moutarde
- Adventices naturelles : <u>matricaire</u>.
- à port érigé (vertical) :
- Adventices modèles : <u>ray grass</u>
- Adventices naturelles : <u>chénopode</u>.



Robotique et capteurs au service d'Ecophyto

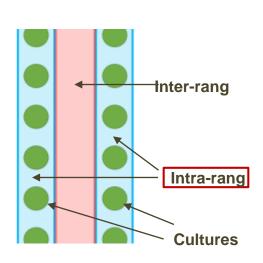
Evaluation de la détection des adventices et cultures


Objectif: déterminer la position des adventices et/ou des plantes d'intérêt sur les images

Robotique et capteurs au service d'Ecophyto

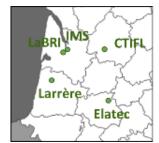
Evaluation de l'action de désherbage sur parcelle

Objectif: désherber les adventices indiquées par des marqueurs jaunes sans endommager les cultures indiquées par des marqueurs bleus



Robotique et capteurs au service d'Ecophyto

Evaluation globale sur parcelle


Objectif: désherber les adventices sans endommager les cultures

Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

BIPBIP

Un consortium (presque) régional...

3	Partenaires	Compétences		
	Laboratoire IMS Bordeaux Sciences Agro	Traitement d'image, vision par ordinateur Proxidétection en agriculture		
:	Elatec	Conception et fabrication d'agro-équipements		
,	LaBRI – Equipe Rhoban	Informatique, robotique Robots pour l'agriculture de précision		
	Centre Technique Interprofessionnel des Fruits et Légumes	Recherche et transfert pour les cultures légumières et fruitières		
	Larrère et Fils	Maraîchage et Grandes Cultures, Agriculture biologique et conventionnelle		

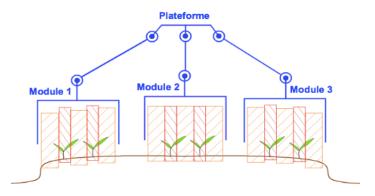
Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

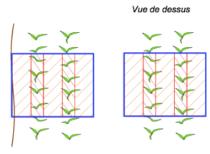
Les lignes directrices du projet

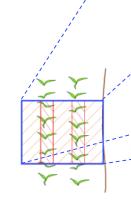
Un système de désherbage qui garantisse efficacité et acceptabilité par la profession :

- compatible avec de multiples cultures et itinéraires techniques (y compris biologique);
- efficace sur les adventices sans détériorer les cultures ni l'état de surface du sol;
- applicable dès les premières semaines après semis ;
- rapide pour assurer un débit chantier suffisant ;
- propre et peu énergivore.

Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

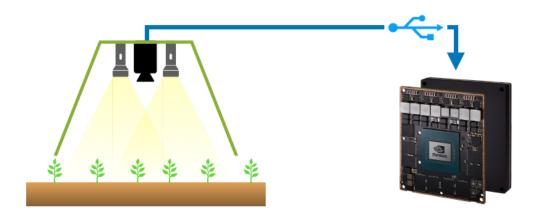



Un bloc-outil de binage assisté par imagerie :


Dédié au désherbage d'un rang unique (ou double-rang),

 Conçu pour être tracté/embarqué par n'importe quel porteur agricole

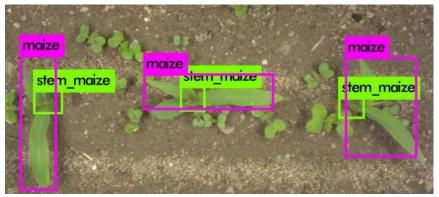
 Utilisable seul ou réplicable pour traiter plusieurs rangs de cultures

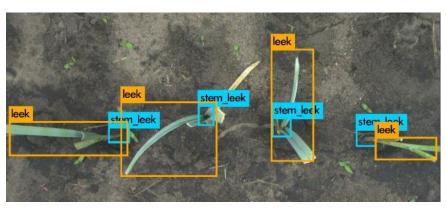


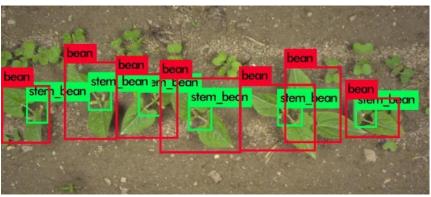
Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

Détection des cultures : un système de vision dédié

- caméra RVB industrielle (Basler acA2500-gc),
- tunnel opaque avec éclairage contrôlé (panneaux de LEDs),
- ordinateur embarqué dédié à l'IA (NVIDIA Jetson Xavier),
- architecture Deep Learning Tiny Yolo pour détecter / localiser les cultures.






Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

Détection des cultures : un système de vision dédié

MAP Scores	Speed	Bean	Bean stems	Maize	Maize stems
Tiny Yolo v3	30 frames/s	91%	-	94%	-
Tiny Yolo v3 Pan 3	15 frames/s	92%	75%	96%	84%

^{*} L. Lac et al., ECPA, 2019, Montpellier, France.

Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

Désherbage mécanique intra-rang

- Un bloc-outil dédié au binage d'un rang :
 - Porté sur les 3-points
 - Un bloc-outil par rang (réplicable)
 - Asservissement latéral (assisté par vision)
 - Asservissement vertical (assisté par Lidar)

Impact environnemental minimal :

- Système électro-mécanique
- Energie électrique
- → 0 pesticide, 0 pollution parasite
- Des outils adaptés au binage de précision
 - outils fixes de binage au + près du rang
 - outils mobiles interchangeables.
 - → Préserver les cultures et l'état du sol

Bloc-outil et Imagerie de Précision pour le Binage Intra-rang Précoce

Conclusions et perspectives

Pour le projet BIPBIP

- Preuve de concept achevée :
 une chaîne « détection → décision → action » opérationnelle
- Développement à poursuivre :
 - Détecter dans toutes les conditions
 - Désherber dans toutes les conditions
- Industrialisation à mener...

Pour le Challenge ROSE

- Levée de verrous scientifiques, technologiques, méthodologiques
- Etablissement de standards et de références
- Méthodologie d'évaluation et base de données d'images annotées partagées et réutilisables
 - au delà du challenge ROSE
 - par l'ensemble des acteurs développeurs de solutions

Robotique et capteurs au service d'Ecophyto

Pour continuer à nous suivre ...

...et utiliser les outils partagés

Site internet du challenge : www.challenge-rose.fr

Prochains RDV possibles:

- FIRA 2019
- SIA 2020
- Robocup 2020
- Publication des résultats
- Mise à disposition des outils

- ...

