Tight control of division plane orientation is necessary to optimize the growth capacity of tissues and organs in Arabidopsis thaliana

Analysis of replum development in the trm1234 mutant

Magalie Uyttewaal

The SPACE team (Spatial Control of Cell Division) Institut Jean-Pierre Bourgin, INRAE Versailles

Diversity of fruit shapes among Angiosperms and among families

Boualem et al., 2022, Current Biology

Snyders Frans 1960, Musée du Louvre

In numerous species fruit shape is correlated to ovary shape

Arabidopsis female reproductive organ development: from the SAM to the mature pistil

Determinants of gynoecium and fruit size and shape are related to growth and division effectors and TRM genes

Wu et al., 2018

Differential cell patterning in round versus elongated ovary (Pan et al 2020, Wu et al 2018).

The TRM-OVATE module controls fruit shape in several species (Wu et al., 2018, Boualem et al., 2022)

- ovate
 Grain shape in rice
(Wang et al., 2015)

WT

gw7 mutant

GW7 overexpression

Species	Gene	Trait	Reference
Maize	ZmGW7-GRMZM2G061562	kernel size	Li et al., 2022
Melon	TRM	fruit shape	Boualem et al., 2022
Maize	GRMZM2G403003	root hair length	Liu et al., 2021
Cotton	OsGL7 Homolog	seed size	Liu et al., 2020
Tomato	TRM	fruit shape	Wu et al., 2018
Cucumber	TRM	fruit shape	Wu et al., 2018
Wheat	TaGW7	fruit shape and weight	Wang et al., 2019
Rice	OsGL7/OsGW7	grain size	Wang et al., 2015
Rice	OsGW7	grain shape, yield, quality	Wang et al., 2015
Arabidopsis	TRMs	Silique size and shape	Unpublished data, SPACE group

The TTP protein complex regulates cortical microtubule arrays

The TTP complex

The Arabidopsis TRM family

Drevensek et al., 2012
Spinner et al., 2013
Schaefer et al., 2017

The Arabidopsis Gynoecium: a complex organ with parallel cell files in the replum

Cell files Identifiable from early stages of development (FM4-64, RPL1-GFP)

Quantitative analysis of cellular and sub-cellular parameters of the quadruple trm1234 mutant

- 2D segmentation -Cell morphology -Cell file identification -Transverse angles -Skeletonization and vertex analysis

TRM1234 control interphasic cortical microtubule array organization

Cell growth and cell division during replum development

Cell growth and cell division during replum development

Cell growth is not strongly affected in trm1234,...
... Cell elongation is reduced in trm1234

The cellular topology of the replum is altered in trm1234

trm1234

BoneJ skeleton Analysis

Walls diverge from transverse in the trm1234 mutant

Cell File Angle Tool (IJPB-plugin in Fiji, Schaefer et al., 2017)

Recent cell walls are only slightly tilted the trm1234 mutant

Recently divided cells

Non-transverse angles can be amplified by elastic stretching

As a consequence, pistil growth, fruit size and seed number are reduced in the trm1234 mutant

Stage 12

Length (mm)

Pistil growth after petal emergence

Mature siliques

Seed number per silique

Cellular function of TRM 1-2-3-4 in fruit development, from sub-cellular events to organ shape

Thanks to

SPACE team:
David Bouchez
Martine Pastuglia
Katia Belcram
Bérengère Dalmais
Aloise Ducamp
Zoé Bomsel
Past members
Marie-Ludivine Moreau-de Tauzia
Chie Kodera
Coralie Goncalves

The plant observatory:
OV - Cytologie / Imagerie, Gladys Cloarec
OV - Plant facilities

Collaborations:
Sarah Robinson, Léo Serra (Sainsbury Laboratory, Cambridge)
Philippe Andrey, Eric Biot, Sandrine Lefranc (MIN group, IJPBINRAE de versailles)
... Cell elongation is reduced in trm1234

(anisotropic growth requires an highly ordered interphasic cortical MT array)

3D morphological cell fruit parameters

(mCherryTUBULIN6, outer epidermal cell face)

shortest/longest perimeters

Mitotic figures are slightly more tilted in the trm1234 mutant

Orientation of mitotic MT arrays (PPB \& phragmoplast)

$$
\begin{aligned}
& \text { WT : } 5.09 \pm 4.63(n=199) \\
& \text { trm1234: } 7.54 \pm 5.94(n=237)
\end{aligned}
$$

Morphology of the WT gynoecium

bm21

